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Synthesis and Reactions of a New Neutral 
Diazo Complex of Iridium(I) 

Sir: 

It is now well established that the aryldiazo ligand, N2R+, 
shows varying modes (A, B, C, Figure 1) of attachment to 
transition metal systems, and that such variations may be used 
as a sensitive probe of the metal center and its reaction 
chemistry.1"7 In this sense the N2R+ ligand shows amphoteric 
character as do NO+ 8 and SO2.9 Although the literature10 is 
repleat with a wide variety of diazo molecules, N2R, essentially 
no reaction chemistry of such molecules with transition metals 
has evolved. Recently11 the coordination of diazofluorene, R 
= fluorene, was established as side-on (D), there being no 
counterpart known among N2R+ complexes at this time. A 
diazomethane complex of manganese shows a unique structure 
in which the neutral ligand bridges three metal atoms.12 

Moreover, we have established the totally linear geometry (E) 
for R = Bn)HgSMe2,

13 and again there is no counterpart in 
N2R+ structures. On the basis of the three known examples, 
neutral N2R ligands may be much more versatile than N2R+ 

ligands in their modes of bonding to metal complexes. How­
ever, the comparative structural and reaction chemistry of 
N2R+ and N2R complexes of transition metals is hampered 
by the essentially complete absence of transition metal-N2R 
complexes. 

Here we wish to report a facile synthetic route to a variety 
of new iridium-N2R species, in which N2R = 2, 3, 4, 5-
tetrachlorodiazocyclopentadiene, N2CsCU, and to contrast 
the reaction chemistry of the key compound IrCl(N2C5Cl4)-
(PPh3);, (I) with related systems IrClX(PPh3)2 where X = 
CO,14 NO+,15 and N2Ph+.16 Compound I is prepared in one 
step from IrCl(CO)(PPh3)2 according to 

IrCl(CO)(PPh3), 

CHCl3/EtOH, ArCON3 

N2C5Cl4, O 0C 
IrCl(N2C5Cl4)(PPh3)2 (1) 

It has been characterized by the usual analytical and spec­
troscopic methods and by a complete crystal structure analysis 
(R = 0.047). Figure 2 shows the inner coordination sphere of 
the complex. Note that the mode of attachment (A) is the 
fourth one to be exhibited among the four known structures 
of transition metal-N2R complexes. 

Compound I reacts with phosphines, phosphites, isocyanides, 
nitrosyl, and diazonium ions to form the respective five-coor­
dinate species (Table I). Upon formation of the five-coordinate 
complex, IrCl(N2C5CLi)L(PPh3)2, KNN) sharply decreases 
by ~400 cm -1 when L = f-BuNC and by 200 cm -1 when L 
= tertiary phosphine. The value of c(NN) also decreases upon 
coordination of NO and PhN2+; isotopic labeling experiments 
using 15NO+ and 15NNPh+ are in progress. 

Carbon monoxide and SO2 displace the diazo ligand of 
compound I to give IrCl(CO)(PPh3)2 and IrCl(SO2)(PPh3);,.

17 

The diazo ligand does not react with IrCl(CO)(PPh3)2 nor with 
the thiocarbonyl analogue IrCl(CS)(PPh3)2.

18 

The reaction chemistry of compound I depends upon the 
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Figure 1. Pictorial representation of bonding modes of transition metal 
diazo complexes. Multiple bonds are not shown. 

Figure 2. The inner coordination sphere with some bond distances for 
IrCl(N2C5Cl4)tP(C6H5)3]2. 

electronic and steric characteristics of the incoming ligand. 
Thus cationic ligands such as NO+ and PhN2

+ react with 
compound I to give five-coordinate products. These complexes 
are particularly interesting in that they contain two amphoteric 
ligands. The observed p(NO) and KNN) stretching frequen­
cies of the IrCl(N2CsCl4)(NO)(PPh3)2

+ complex are low 
(1522,1497, and 1450 cm -1), consistent with a bonding mode 
of the N2R ligand significantly different from that in com­
pound I. The values of v(NN) for the complexes 
IrCl(N2C5Cl4)(L)(PPh3);,, L = PMePh2 and PhN2

+, suggest 
that the bonding mode of the N2R ligand may be identical in 
these two complexes. 

The reaction chemistry of compound I resembles, to a point, 
the chemistry of the cationic aryldiazo complex IrCl(N2Ph)-
(PPh3)2

+.16 Both complexes form five-coordinate adducts with 
phosphines and isocyanides and exhibit similar decreases in 
the values of e(NN) upon coordination of these ligands. 
However, the reactions of compound I with CO, NO+, and 
N2Ph+ are very different. The neutrality of complex I as op­
posed to IrCl(N2Ph)(PPh3)2

+ is certainly one obvious fea­
ture. 

Structurally, the coordinated N2C5Cl4 and PhN2
+ 19 

complexes are similar; both contain singly-bent diazo linkages 
(Ir-N(l)-N(2) = 174.9, 176.1°), with the diazo R group 
perpendicular to the P-P vector. The N(l)-N(2)-C(l) angles 
(141, 126°) and the N(2)-C(l) (1.35, 1.45 A) distances are 
markedly different in the two complexes; the N-N-C angle 
of the N2R complex is closer to 180°, but this may only be a 
function of the increased steric bulk of the chlorine atoms on 
the cyclopentadiene ring. The N(2)-C(l) distance of the N2R 
complex is identical with that observed for uncoordinated 
neutral diazo ligands;20 however, the molecular structure of 

Compd" Appearance Infrared data* 

IrCl(N2C5Cl4)(PPh3)2 
IrCl(N2C5Cl4)(N2Ph)(PPh3)2

+ 

IrCl(N2C5Cl4)(PMePh2)(PPh3)J 
IrCl(N2C5Cl4)(NO)(PPh3)2+ 
IrCl(N2C5Cl4)(Z-BuNC)(PPhJ)2 
N2C5Cl4 

Dark green 
Orange-brown 
Red-brown 
Orange-yellow 
Dark purple 
Dark yellow 

KNN) = 1858; HIrCl) =348 
KNN) = 1678, 1665 
KNN) = 1660 
KNO, NN) = 
KNN) = 1455; KCN) 
KNN) = 2105 

522,1497, 1450; KIrCl) 
2210 

330 

" A representative group of the compounds prepared; frequencies given as cm-1; C, H, and N analyses are satisfactory for all compounds, 
spectra taken in perfluorokerosene and Nujol mulls; anions are always PFj - . * KNN) and KNO) for the metal complexes are tentatively 
assigned awaiting 15N labeling studies. 
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the N2C5Cl4 molecule is not known. The Ir-N(I)(1.819,1.794 
A) and N( 1 )-N(2) (1.171,1.159 A) distances, while similar, 
are consistent with less it back-bonding from metal to atom 
N( I ) in the N 2 R species. 

We believe that the route to a variety of metal-N2R com­
plexes described here is a"general one and that the comparative 
reaction and structural chemistry of these complexes and their 
CO, N O + , and N 2 Ph + analogues will prove to be diverse and 
interesting. 
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A Total Synthesis of Lasalocid A 

Sir: 

Lasalocid A ( I ) , produced by Streptomyces lasaliensis, is 
a member of the class of naturally occurring ionophores known 
as polyether antibiotics.1 Isolation,2 structure elucidation,3-4 

1,R = H (lasalocid A) 
15, R = CH2C6H5 

biosynthesis,5 and biological activity6 of lasalocids have been 
reported. Polyether antibiotics present a formidable challenge 
for synthetic chemists; lasalocid A has ten chiral centers on the 
carbon backbone. We would like to report the first total syn­
thesis of lasalocid A (1) with regio- and stereocontrol. 

(4£,8£)-Ethyl 2-methyl-4,8-diethyldecadienoate (2)7 (bp 
88-90 0 C (0.17 mmHg); 1H NMR (CDCl3) 8 5.12 (1 H, t, J 
= 7 Hz), 5.17 (1 H, q, J = 7 Hz)), readily synthesized by 
adapting Johnson's method,8 was converted to the aldehyde 
37 (bp 83-85 0 C (0.22 mmHg); 1H N M R (CDCl3) 5 5.10 (1 
H, t, J = 7 Hz), 5.14 (1 H1 q, / = 7 Hz), 9.59 (1 H, d, / = 2 
Hz)) in 95% yield by two steps: (1) LiAlH 4 /Et 2 0, room 
temperature; (2) pyridinium chlorochromate/CH2Cl2, room 
temperature.9 Treatment of 3 with p-methoxyphenylmag-

Me ^ M e ( ^ V T - Y ^ M e Me 

M e O ^ 5 * ^ 

2,X = CO5Et 4,X = Y = O (ketone) 
3,X = CHO 5, X = H; Y = OH 

Me Me 

nesium bromide in ether, followed by Jones oxidation, gave the 
ketone 47 (oil; 1H NMR (CDCl3) 8 5.06 (1 H, t, J = 7 Hz), 
5.10 (1 H, q, J = 7 Hz)) in 72% overall yield. Highly stereo-
specific reduction of 4 to the alcohol 57 (oil; 1H NMR (CDCl3) 
5 4.36 (1 H, d, / = 7 Hz), 5.10 (1 H, t, J = 7 Hz), 5.13(1 H, 
q, J = 7 Hz)) was realized by a combination of lithium alu­
minum hydride and rf/-2-(o-toluidinomethyl)pyrrolidine.10 

Assignment of the stereochemistry of 5 was made based on 
Cram's rule.1' The ratio of 5 and its diastereomer obtained by 
this method was at least 10:1 (97% yield), whereas other re­
ducing reagents including hindered borohydrides gave less 
satisfactory results.12 Optical resolution of 5 was achieved by 
preparative HLC separation of the /-a-methylbenzylurethane 
derivative of 5.13 

Epoxidation of the levorotatory alcohol 5 (/-BuOOH/VO-
(acac)2/NaOAc/CeH6, room temperature14), followed by 
acetic acid workup, gave the tetrahydrofuran 67 (75% yield; 
oil; 1H N M R (CDCl3) 5 3.65 (1 H, br), 4.30 (1 H, d, / = 9 
Hz), 5.20 (1 H, q, J = 7 Hz)) along with a small amount of its 
stereoisomer in a ratio of 8:1.15 As the C-15 l 6 hydroxy group 
was expected to control the stereochemistry of the epoxidation 
reaction,15 structure 6 was assigned to the major product. 
Repetition of epoxidation of 6 under the same conditions, 
followed by acetylation (Ac 20/Py, room temperature),17 al­
lowed isolation of the epoxide V (oil; 1H NMR (CDCl3) 8 2.82 
(1 H, q, J = 6 Hz), 4.25 (1 H, d, / = 9 Hz), 5.03 (1 H, br)), 
which was transformed to the tetrahydrofuran 87 (oil; 1H 
NMR (CDCl3) 8 3.72 (1 H, q, / = 7 Hz), 4.08 (1 H, m), 4.28 
(1 H, d, J = 10 Hz); [a ] 2 2

D + 1.74° (c 1.44, CHCl3)) by four 
steps ((1) 0.1 N H2S04/aqueous acetone, room temperature;18 

(2) TsCl/Py, room temperature; (3) K 2 C 0 3 / C H 3 0 H , room 
temperature; (4) AcOH, room temperature) in 45% overall 
yield. The first three steps were necessary to invert the stere­
ochemistry of the epoxide ring. The overall stereoselectivity 
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